

DiddiParser 2 documentation

Welcome! This documentation explains the functions of the
DiddiScript parser, and the language itself.

If you are new here, you can start by reading the DiddiParser 2 tutorial.

See also

	DiddiParser2 GitHub repository [https://github.com/DiddiLeija/diddiparser2]
	The GitHub repository for this project.

	Changelog [https://github.com/DiddiLeija/diddiparser2/blob/main/CHANGELOG.md]
	See the changelog per version.

	License [https://github.com/DiddiLeija/diddiparser2/blob/main/LICENSE.txt]
	This project is licensed under the MIT license. See that license at GitHub.

Introduction

DiddiScript is a language made to be easy to extend and enough powerful to help
your workflows. DiddiParser 2 is the current parser for this language, written
with pure Python and packaged as open source. To get the parser, you can use Pip:

python -m pip install diddiparser2

Also, this package provides more than a rough parser CLI. It also provides a console
(which is some kind of a REPL), an editor GUI, a standard library for DiddiScript, and
even an implementation for Python.

Table of Contents

	DiddiParser 2 tutorial

	Command-line usage

	The DiddiScript Editor Guide

	API reference of DiddiParser 2

	Contributing to this project

	DSGPs (DiddiScript Grammar Proposals)… The future of DiddiScript

	The DiddiScript language reference

	DiddiScript comments

	Functions

	DiddiScript variables

	Standard DiddiScript libraries

	_builtin – Convenience functions

	fileio – Regular file interactions

	math – Math operations for DiddiScript

	simpleio – Common I/O interactions

	sqlite – Interact with SQLite databases

	subprocessing – Make subprocesses as DiddiScript functions

	Appendix

	Appendix: Anatomy of the source code

	Appendix: DiddiScript (language)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 diddiparser2	

 	
 	
 diddiparser2.diddiscript_types	

 	
 	
 diddiparser2.editor	

 	
 	
 diddiparser2.messages	

 	
 	
 diddiparser2.parser	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__bool__() (diddiparser2.diddiscript_types.Boolean method)

 	(diddiparser2.diddiscript_types.DiddiScriptType method)

 	__float__() (diddiparser2.diddiscript_types.DiddiScriptType method)

 	(diddiparser2.diddiscript_types.Floating method)

 	__init__() (diddiparser2.diddiscript_types.Boolean method)

 	(diddiparser2.diddiscript_types.Floating method)

 	(diddiparser2.diddiscript_types.Integer method)

 	(diddiparser2.diddiscript_types.Null method)

 	(diddiparser2.diddiscript_types.Text method)

 	(diddiparser2.parser.DiddiParser method)

 	
 	__int__() (diddiparser2.diddiscript_types.DiddiScriptType method)

 	(diddiparser2.diddiscript_types.Integer method)

 	__str__() (diddiparser2.diddiscript_types.DiddiScriptType method)

 	(diddiparser2.diddiscript_types.Null method)

 	__version__ (in module diddiparser2.parser)

B

 	
 	Boolean (class in diddiparser2.diddiscript_types)

 	
 built-in function

 	cd()

 	chdir()

 	close_database()

 	commit_changes()

 	division_operation()

 	ensurefile()

 	execute_sql()

 	load_extension()

 	load_module()

 	multiplication_operation()

 	open_database()

 	power()

 	print_available_functions()

 	print_line(), [1]

 	print_stored()

 	print_text(), [1]

 	printfile()

 	program_exit()

 	run_command()

 	run_python_cmd()

 	store_file()

 	store_input(), [1]

 	subtraction_operation()

 	sum_operation()

 	wait()

 	warning(), [1]

C

 	
 	
 cd()

 	built-in function

 	
 chdir()

 	built-in function

 	
 	
 close_database()

 	built-in function

 	
 commit_changes()

 	built-in function

 	compile_error() (in module diddiparser2.messages)

D

 	
 	DiddiParser (class in diddiparser2.parser)

 	
 diddiparser2.diddiscript_types

 	module

 	
 diddiparser2.editor

 	module

 	
 diddiparser2.messages

 	module

 	
 	
 diddiparser2.parser

 	module

 	DiddiScriptType (class in diddiparser2.diddiscript_types)

 	
 division_operation()

 	built-in function

E

 	
 	
 ensurefile()

 	built-in function

 	error

 	execute_def() (diddiparser2.parser.DiddiParser method)

 	
 	execute_func() (diddiparser2.parser.DiddiParser method)

 	
 execute_sql()

 	built-in function

 	executeline() (diddiparser2.parser.DiddiParser method)

 	EXECUTION_VARIABLES (in module diddiparser2.parser)

F

 	
 	Floating (class in diddiparser2.diddiscript_types)

G

 	
 	get_commands() (diddiparser2.parser.DiddiParser method)

I

 	
 	identify_value() (diddiparser2.parser.DiddiParser method)

 	
 	Integer (class in diddiparser2.diddiscript_types)

 	InteractiveDiddiParser (class in diddiparser2.parser)

L

 	
 	
 load_extension()

 	built-in function

 	
 	
 load_module()

 	built-in function

 	loop() (diddiparser2.parser.InteractiveDiddiParser method)

M

 	
 	
 module

 	diddiparser2.diddiscript_types

 	diddiparser2.editor

 	diddiparser2.messages

 	diddiparser2.parser

 	
 	
 multiplication_operation()

 	built-in function

N

 	
 	Null (class in diddiparser2.diddiscript_types)

O

 	
 	
 open_database()

 	built-in function

P

 	
 	parse_string_indexing() (diddiparser2.parser.DiddiParser method)

 	
 power()

 	built-in function

 	
 print_available_functions()

 	built-in function

 	
 print_line()

 	built-in function, [1]

 	
 	
 print_stored()

 	built-in function

 	
 print_text()

 	built-in function, [1]

 	
 printfile()

 	built-in function

 	
 program_exit()

 	built-in function

R

 	
 	
 run_command()

 	built-in function

 	run_error() (in module diddiparser2.messages)

 	
 	
 run_python_cmd()

 	built-in function

 	runfile() (diddiparser2.parser.DiddiParser method)

S

 	
 	show_warning() (in module diddiparser2.messages)

 	
 store_file()

 	built-in function

 	
 store_input()

 	built-in function, [1]

 	
 	
 subtraction_operation()

 	built-in function

 	success_message() (in module diddiparser2.messages)

 	
 sum_operation()

 	built-in function

T

 	
 	Text (class in diddiparser2.diddiscript_types)

V

 	
 	value (diddiparser2.diddiscript_types.DiddiScriptType attribute)

W

 	
 	
 wait()

 	built-in function

 	
 	
 warning()

 	built-in function, [1]

Command-line usage

The DiddiParser 2 command-line tool can be accessed by 2 ways: by running
the traditional python -m diddiparser2 or the diddiparser2 console
script:

python -m diddiparser2 file.diddi
diddiparser2 file.diddi

diddiparser2 options

--version

diddiparser2 --version

Print the parser’s version.

--ignore-suffix

diddiparser2 other_script.txt --ignore-suffix

Ignore the warnings caused when the script does not end with the standard
.diddi prefix. This passes ignore_suffix=True to
diddiparser2.parser.DiddiParser.__init__().

--verbose / -v

diddiparser2 some_file.diddi --verbose

Pass verbose=True to diddiparser2.parser.DiddiParser.__init__(). The
parser will echo all the commands found in the file.

--compile-only / -c

diddiparser2 some_file.diddi --compile-only

Pass compile_only=True to diddiparser2.parser.DiddiParser.__init__().
The parser will just run what is necessary, and will compile and identify potential
errors.

diddiscript-console – Interactive console

DiddiParser 2 has provided an interactive console to run command-by-command
(which is, formally, a REPL), via the diddiscript-console command:

C:> diddiscript-console

Welcome to the interactive DiddiParser console.
Parser version: 1.0.0
==

>

diddiscript-editor – DiddiScript integrated editor

DiddiParser 2 has an integrated editor built with Tk (via the
tkinter Python module) with special functionalities focused
on DiddiScript.

It can be activated via the diddiscript-editor command, or
using python -m diddiparser2.editor.

See a detailed guide at The DiddiScript Editor Guide.

Contributing to this project

This document explains how can you contribute to:

	DiddiParser 2 (the Python package, which is the official DiddiScript parser)

	DiddiScript (language)

	This documentation

Report a bug or propose a new feature

We have GitHub Issues [https://github.com/DiddiLeja/diddiparser2/issues] enabled,
so you can report bugs and propose features on it. In many cases, it is better to
open an issue before submitting a pull request, so we can discuss your idea first.

Note

Proposals to the DiddiScript language (not libraries) should
be filed as a DSGP. Read more at DSGPs (DiddiScript Grammar Proposals)… The future of DiddiScript.

Contributions to the parser (DiddiParser 2)

DiddiParser 2 (diddiparser2) is a Python package. As a Python package, it accepts
contributions in Python code. You can contribute with libraries, parser behaviors,
etc. Also, you can contribute to GitHub-specific stuff, and anything
else living on the repository.

Python version

You must have Python 3.7+ to use and develop DiddiParser 2.

Forking the GitHub repo

To get the GitHub repository for development, use Git to clone it:

git clone https://github.com/DiddiLeija/diddiparser2.git

(Also, you can clone from your own fork on GitHub, or use the GitHub.com interface).

Set up Nox

We use Nox [https://nox.thea.codes] in our GitHub CI. But you can also
use it on your local clone. If you have installed nox, you can run
sessions on it. They are necessary for testing on a local clone.

Code style and linters

[image: _images/code%20style-black-000000.svg]
 [https://github.com/psf/black]We follow the Black code style in our codebase. Also, we run linters
(isort, flake8) to keep the codebase as clean as possible.

To reformat your code, run:

nox -s format

To run linters, run:

nox -s lint

Also, you can run both things together with another session:

nox -s format-and-lint

To test your code with a DiddiScript console and the
latest code:

nox -s generate-console

And to check your code with the DiddiScript editor:

Contributions to documentation

[image: Documentation Status]
 [https://diddiparser2.readthedocs.io/en/latest/?badge=latest]We host our documentation using ReadTheDocs [https://readthedocs.org] and
Sphinx [https://sphinx-doc.org]. We accept contributions to the documentation’s
source code, and their related items.

DSGPs (DiddiScript Grammar Proposals)… The future of DiddiScript

Do you want to contribute to the DiddiScript grammar? Read this section, it is for you.

The DiddiScript grammar depends on a series of documents called DSGPs
(DiddiScript Grammar Proposals). On those documents, the future of DiddiScript
is being developed. You can write and propose one, and maybe you can improve the
DiddiScript language!

See also

	DSGP 0 [https://github.com/DiddiLeija/diddiparser2/blob/main/dsgp/dsgp-000.md]
	This DSGP describes the scheme that all the DSGPs should follow.

	Tree of DSGPs [https://github.com/DiddiLeija/diddiparser2/tree/main/dsgp/]
	This tree contains the complete list of DSGPs.

	Search in-progress DSGPs [https://github.com/DiddiLeija/diddiparser2/pulls?q=is%3Apr+is%3Aopen+label%3A%22diddiscript%3A+DSGP%22]
	Pull requests of DSGPs that aren’t on the official list, and are not ready yet.

	DSGPs Project Board [https://github.com/DiddiLeija/diddiparser2/projects/2]
	See the statuses of the DSGPs, according to their PRs.

The DiddiScript Editor Guide

This editor, built with the Python standard tools tkinter
and idlelib, is a Tk app focused in the DiddiScript language.

Commands to activate the editor

The easiest way is the diddiscript-editor command,
included with the DiddiParser 2 Python package.

Also, since it’s included in the DiddiParser 2 package, it
can be called with Python, via python -m diddiparser2.editor. See
diddiparser2.editor for related information.

On a clone of the GitHub repository [https://github.com/DiddiLeija/diddiparser2],
you can also run a Nox session for generating the editor with the
latest code, via the nox -s generate-editor command.

Design of the editor

The editor is pretty simple: it is a text widget, with a
menu that provides all the necessary options (see their options
below).

Editor’s options and tools

A quick guide to the options of the editor’s menu.

	About…
	Display useful information as separate windows.

	About DiddiScript
	A quick introduction to DiddiScript. It is the main docstring
of diddiparser2.

	About DiddiParser 2
	Information about the DiddiScript parser. It is the docstring
of diddiparser2.parser.

	About this editor
	Information about the DiddiScript editor.

	File
	Modify or manage the file stuff.

	New file
	Clear the text entry, as an empty file.

If the editor has something more than spaces or newlines,
it will ask you to select an option: save (“Yes”),
don’t save (“No”) or cancel (“Cancel”).

	Save As…
	Open a “Save As” dialog, and save the current contents.

	Save
	If you’re already on a file, save without asking. If not,
do the same than the Save As function.

	Open…
	Open an existing file.

	Run
	Run DiddiScript stuff. Logs are shown in console.

	Compile code
	Run the DiddiScript code in “compile only” mode.

	Run code
	Run the DiddiScript code.

	Settings
	Modify settings to customize your experience.

	Set verbosity
	Decide to set verbosity or not.

If set, the parser will behave on verbose mode.
For example, it will echo the functions and notify
other events.

	Set suffix ignoring
	Decide to set suffix ignoring or not.

If set, the editor won’t raise a warning if a file to
open does not have the DiddiScript suffix (*.diddi).

	Themes
	Modify the themes (see below for detailed reference).

	Load themes from a JSON file
	Load custom themes from a JSON file (see the
“Load customized themes” section below). It will ask each
time it finds a valid theme on the file. If you accept, the
theme will be registered.

	See all the themes
	In a separate window, show all the themes and their information.

	Set theme
	This menu will display a child menu, with all the available
themes to select and apply.

Themes

New in version 1.2.0.

You can customize the DiddiScript editor using themes. By default,
we have provided you these themes:

	Light DiddiScript: A simple light theme.

	Dark DiddiScript: A simple dark theme.

Load customized themes

We support customized themes loaded from a JSON file. The
“Load themes from a JSON file” option from the editor will
let you select a JSON file, and try to load themes from it.

The format of the JSON, to be accepted, is a dictionary or
a list of dictionaries, where each dictionary represents a
“theme”. The dictionaries should have this keys:

	name: A text with the theme’s name. It will be used everywhere.

	description: An optional text with a description of the theme.

	background: The color of the theme’s background.

	regular-text: The foreground of regular text.

Examples of valid colors: red, #cfd3d7.

Here we have a few examples of accepted JSON files:

{
 "name" : "My theme",
 "description" : "A personal theme.",
 "background" : "#ffffff",
 "foreground" : "green"
}

[
 {
 "name" : "One theme",
 "background" : "whitesmoke",
 "regular-text" : "gray"
 },
 {
 "name" : "Another theme",
 "description" : "A theme different to 'One theme'.",
 "background" : "black",
 "regular-text" : "white",
 }
]

API reference of DiddiParser 2

This document explains the internal API of DiddiParser 2

diddiparser2.diddiscript_types – DiddiScript standard types

This Python module stores all the DiddiScript types (written in
Python) defined by DSGP 1 [https://github.com/DiddiLeija/diddiparser2/blob/main/dsgp/dsgp-001.md].
You can return these types in your extensions.

	
class diddiparser2.diddiscript_types.DiddiScriptType

	The template type for all the DiddiScript types. Please don’t use this type.

	
value

	The Python value that is represented by the DiddiScript type. On this template type,
is is an empty object.

	
__str__(self)

	Returns the value, as a string. In most of the cases,
this method is respected by all the subclasses.

	
__int__(self)

	
Returns the value as a Python integer. If a ValueError
is raised, we raise our own exception.

	
__float__(self)

	Returns the value as a Python float. If a ValueError
is raised, we raise our own exception.

	
__bool__(self)

	Returns the value as a Python bool.

	
class diddiparser2.diddiscript_types.Integer(DiddiScriptType)

	The type that represents integer numbers.

	
__init__(self, value_text)

	
	Parameters

	value_text – The value to be stored. This becomes diddiparser2.diddiscript_types.DiddiScriptType.value.

Constructor method. The value is converted to int.

	
__int__(self)

	Instead of trying to convert to int, we just return the value.

	
class diddiparser2.diddiscript_types.Floating(DiddiScriptType)

	The type that represents floating numbers.

	
__init__(self, value_text)

	
	Parameters

	value_text – The value to be stored. This becomes diddiparser2.diddiscript_types.DiddiScriptType.value.

Constructor method. The value is converted to float.

	
__float__(self)

	Instead of trying to convert to float, we just return the value.

	
class diddiparser2.diddiscript_types.Text(DiddiScriptType)

	The type that represents text.

	
__init__(self, value_text)

	
	Parameters

	value_text – The value to be stored. This becomes diddiparser2.diddiscript_types.DiddiScriptType.value.

Constructor method. The value is not converted, since we always expect value to be a string.

	
class diddiparser2.diddiscript_types.Boolean(DiddiScriptType)

	The type that represents booleans.

	
__init__(self, value_text)

	

	param value_text

	The value to be stored. This becomes diddiparser2.diddiscript_types.DiddiScriptType.value.

Constructor method. It tries to convert the value to bool. If that doesn’t work, we convert value to the bool
resulting from a truthy-falsy comparation (however, this is not needed at all).

	
__bool__(self)

	Instead of trying to convert to bool, we just return the value.

	
class diddiparser2.diddiscript_types.Null(DiddiScriptType)

	The type that represents a null value.

	
__init__(self, value_text=None)

	
	Parameters

	value_text – We only have this to avoid argument issues, but it is ignored.

Constructor method. Actually, value_text is ignored here, we store None instead.

	
__str__(self)

	This method is overriden to return a "Null" text.

diddiparser2.parser – main parser configurations

This module configures the main DiddiScript parser, and
some useful variables.

	
diddiparser2.parser.__version__

	
	Type

	str

A string that represents the parser’s version.

	
diddiparser2.parser.EXECUTION_VARIABLES

	
	Type

	dict

	Value

	{}

A name: value dictionary of defined variables.

	
class diddiparser2.parser.DiddiParser

	This class is the main DiddiScript parser.

	
__init__(self, file, ignore_suffix=False, verbose=False, compile_only=False, notify_success=True)

	
	Parameters

	
	file (str) – The DiddiScript file to be parsed.

	ignore_suffix (bool) – If True, tells DiddiParser to ignore the suffix mismatch.

	verbose (bool) – If True, the parser will echo all the commands
executed by diddiparser2.parser.DiddiParser.runfile().

	compile_only (bool) – If True, the parser will just run what is necessary for
compiling (like library loaders and variable definitions),
and will try to find potential errors (unresolved references,
invalid code, etc.).

	notify_success (bool) – Mostly an internally-used option, to avoid notifying when an
execution finishes without issues.

The constructor method. It reads the selected filename, and gets the commands via
diddiparser2.parser.DiddiParser.get_commands().

	
get_commands(self)

	
	Returns

	A list of prepared commands.

	Return type

	list

	Raises

	diddiparser2.messages.error – When a syntax error is found.

This function returns a list of DiddiScript commands, without comments. It can raise
a compile error if there are missing semicolons (;).

	
executeline(self, line)

	
	Parameters

	line (str) – A line of DiddiScript code.

	Raises

	diddiparser2.messages.error – If the execution fails.

Run a single line of code. It runs diddiparser2.parser.DiddiParser.execute_def()
and diddiparser2.parser.DiddiParser.execute_func() when necessary.

	
execute_def(self, line)

	
	Parameters

	line (str) – A line of DiddiScript code.

	Raises

	diddiparser2.messages.error – If the execution fails.

Execute a line with a variable definition, according to DSGP 1.

See also

	DSGP 1 [https://github.com/DiddiLeija/diddiparser2/blob/main/dsgp/dsgp-001.md]
	Read the DSGP that specifies the variable standards, and is used by
this method.

	
execute_func(self, line)

	
	Parameters

	line (str) – A line of DiddiScript code.

	Raises

	diddiparser2.messages.error – If the execution fails.

Execute a line with a function.

	
identify_value(self, arg, from_func=False)

	
	Parameters

	
	arg (str) – A string that must become a readable value for DiddiParser.

	from_func (bool) – This is used internally, to tell this method that the value was returned from a library/extension.

Identify a value inside a text, and return the correct value.

Note

When from_func is True, the method won’t fail if no values are found. Instead, it will return a string of the value.
This is a workaround to one of our current issues with interpreting the values returned by libraries/extensions.

However, this is not a recommended behavior. See DiddiLeija/diddiparser2#43 [https://github.com/DiddiLeija/diddiparser2/issues/43] for
more information.

	
parse_string_indexing(self, line)

	
	Parameters

	line (str) – A string.

Format a string with variables, using the DSGP 1 specification.

See also

	DSGP 1 [https://github.com/DiddiLeija/diddiparser2/blob/main/dsgp/dsgp-001.md]
	Read the DSGP that specifies the variable indexing with strings,
and is used by this method.

	
runfile(self)

	Runs diddiparser2.parser.DiddiParser.executeline() for each line, and
then prints a success message.

	
class diddiparser2.parser.InteractiveDiddiParser(DiddiParser)

	This is a subclass of diddiparser2.parser.DiddiParser, which
generates an interactive console to execute commands on real time. It
left unchanged the methods from his ancestor (it only modified the __init__
and print_command). However, it added some other methods, described below.

	
loop(self)

	Generates a “DiddiScript console” which calls
diddiparser2.parser.DiddiParser.executeline() for each line
of input.

diddiparser2.messages – Tools for user/parser interactions

These functions are used by the parser (generated by diddiparser2.parser)
to interact with you as the “interpreter”. Also, you can use some of this
functions in your extensions.

	
exception diddiparser2.messages.error

	An exception (which is a direct subclass of Exception) raised when
a function decided to stop the program.

	
diddiparser2.messages.run_error(msg)

	
	Raises

	error – at the end of the function.

Prints a “run error” in red, and stop the executions. This
function is used when something in the execution failed. In
most of the cases, this function is used by libraries and extensions.

	
diddiparser2.messages.compile_error(msg)

	
	Raises

	error – at the end of the function.

This function prints a “compile error” in red, and stop
all the executions. This is commonly raised by the parser
when a syntax error appears, a missing function is called,
etc.

	
diddiparser2.messages.show_warning(msg)

	This function prints a warning in yellow. It does not
stop the execution.

	
diddiparser2.messages.success_message(msg=None)

	
	Parameters

	msg – An optional message. If it’s None, a default message is used.

This function is called by the parser to tell the user
that the execution finished succesfully.

diddiparser2.editor – The DiddiScript editor

In most of the cases, the API contained in this subpackage
is just used internally for the DiddiScript Editor.

The main configurations happen at diddiparser2.editor.main,
and are imported by diddiparser2.editor.__main__ to use it
via python -m diddiparser2.editor.

See also

	The DiddiScript Editor Guide
	A complete guide to the editor’s GUI and options.

Here’s a small description of each component of this subpackage:

	diddiparser2.editor.__init__
	The init file. It only contains a docstring.

	diddiparser2.editor.__main__
	This enables the use of python -m diddiparser2.editor, to do the
same than the diddiscript-editor command.

	diddiparser2.editor.formatter
	This is the responsible of the “themes stuff”. Here, the theme
colorization is made, the themes are stored, and themes are loaded
from JSON files.

	diddiparser2.editor.main
	This is where the GUI building, setup, and running is done. It
generates a DiddiScriptEditor class, which contains a functional
editor with Tk.

DiddiParser 2 tutorial

This document will help you learn to start with DiddiScript
and DiddiParser 2.

Install DiddiParser 2

To use DiddiScript, you should install its parser, DiddiParser 2. You can get it
using Pip [https://pip.pypa.io]:

pip install diddiparser2

To upgrade it:

pip install --upgrade diddiparser2

Write your DiddiScript file

First of all, you need to write a DiddiScript file (*.diddi). You can define instructions
that run fast with this language.

You can store data using variables:

var my_var; !# Null
var x = 23.4; !# Floating numbers
var y = 56; !# Integers
var name = "Diego"; !# Text
var is_true = False; !# Booleans
var empty_stuff = Null; !# Null (explicitly)

Also, you can call functions, and pass arguments or not:

function1(my_var); !# You can pass variables
function2(413); !# Or values
function3("My text", my_var); !# You can pass several arguments
function4(); !# Or no arguments at all!

You can insert variables into text:

var name = "Diego";
var greeting = "Hello, ${name}!"; !# This would become "Hello, Diego!"

Also, there is a bunch of special functions, that conform your toolbox. To see
them, run this:

print_available_functions(); !# Print all the available functions

You can use pre-loaded functions, and use other functions:

!# The functions below were loaded by default
store_input("Name: ");
!# The special '_memory' represents the last value. In this case, the obtained input:
print_line("Hello, ${_memory}. I am DiddiScript");

load_module("math"); !# This will load the 'math' library

!# Something added by 'math'
sum_operation(1, 1); !# 1 + 1

print_line("1 + 1: ${_memory}");

Execute your file

After you wrote and saved your file, you can run the diddiparser2 command:

diddiparser2 my_diddiscript_file.diddi

(Also, using python -m diddipase2 works fine).

And the inputs/outputs will be shown!

$ diddiparser2 my_diddiscript_file.diddi
Name: Diego
Hello, Diego. I am DiddiScript.
1 + 1: 2

Lower-level usage

Since it is written in Python, DiddiParser 2 can be used under Python code!

These lines of code are equivalent to
running "diddiparser2 my_diddiscript_file.diddi"
from diddiparser2.parser import DiddiParser

script = DiddiParser("my_diddiscript_file.diddi")
script.runfile()

The interactive console

If you don’t want to write a DiddiScript file, you can try commands in real time using the DiddiScript interactive console (or REPL).
You can call it via the diddiscript-console command:

$ diddiscript-console
Welcome to the interactive DiddiParser console.
Parser version: 1.0.0
==

> !# put your commands here!

Going deeper

You know the DiddiScript basics! Hooray!

But if you want to learn more, you can read more in this documentation:

	Do you want to master the DiddiScript language? Read The DiddiScript language reference.

	Do you want to learn the parser internals, or how to use the CLI? Dive into Command-line usage or API reference of DiddiParser 2.

	Are you interested in the future of the project? Go to Contributing to this project.

Appendix: DiddiScript (language)

Note

This was moved here from the old wiki from the GitHub repository.

The DiddiScript language is an extensible, on-development programming language. Its goal is create a language
that becomes the bridge between other well-stablished languages, using a simple syntax.

History

DiddiParser 1 (May 2021 – September 2021)

DiddiParser [https://github.com/DiddiLeija/diddiparser] (or also called DiddiParser 1, because of its successor)
was the first DiddiScript parser, written in Python and created by Diego Ramirez [https://diddileija.github.io].
On May 14, 2021, the first release of the parser (1.0.0 [https://pypi.org/project/diddiparser/1.0.0/]) was released.
Then, some minor releases were published. However, due to several parser issues, the project was abandoned at
September 2nd, 2021, one day after the 1.3 release.

This parser defined a really simple syntax for DiddiScript, with only functions and comments:

!# Inline comment

/*
Block comments were accepted, but
they became a little glitchy
*/

some_function();

It had a very limited standard library, and it was hard to extend (via a rough diddi_extensions.py file per directory).

DiddiParser 2 (November 2021 – today)

After the death of DiddiParser 1, the author of that package wasn’t sure if he could restore his forgotten language.
The old parser could not be fixed and just released, but a new package was going to take the idea of DiddiScript again.

At November 3, 2021, Ramirez started to develop a new parser, called DiddiParser 2 [https://github.com/DiddiLeija/diddiparser2]
(in honor to the previous parser). The goal was to take and improve elements from the old parser, with a more extensible library,
and more flexible extensions (any Python file would become an extension).

Also, this parser introduced the DSGPs (DiddiScript Enhancement Proposals) to ease the syntax development.
For example, the DSGP 1 introduced variables and text indexing to DiddiScript:

var name = "Diego";
some_function("Hi! I am ${name}."); !# Equivalent to "Hi! I am Diego."

Other DSGPs contributed to build a higher-level language.

Finally, at January 9th, 2022 (after 3 months of early development), the first release (1.0.0 [https://pypi.org/project/diddiparser2/1.0.0/])
was released to PyPI. At the 1.1.0 [https://pypi.org/project/diddiparser2/1.1.0/] release (to be more precise, the
1.1.0.post1 [https://pypi.org/project/diddiparser2/1.1.0.post1/] release), the parser made its first major refactoring: it finally dropped the
“functions with a single argument” syntax, and enabled infinite arguments and direct usage of variables and values.

For the 2.x releases, there’re plans to refactor the syntax again to make it more advanced.

Appendix

This appendix shows some useful resources for developers and curious people, even when the contents
are not essential for using DiddiParser 2, that’s why they are in the appendix.

Appendix: Anatomy of the source code

This small document explains the anatomy of the DiddiParser 2 source
code, that can be found at GitHub [https://github.com/DiddiLeija/diddiparser2].

	.github/: Where the GitHub-related stuff is stored. The bots we use are configurated in this folder.

	ISSUE_TEMPLATE/: The issue templates and their config file are here.

	workflows/: The GitHub actions are configured here.

	diddiparser2/: The DiddiParser2 package.

	editor/: This subpackage is the responsible of the DiddiScript editor.

	__init__.py

	__main.py__: The file that enables python -m diddiparser2.editor.

	formatter.py: This file operates the editor themes.

	main.py: The generation file of the editor GUI. It is also the responsible of the compile/run logics of the editor.

	lib/: All the standard libraries are here, including _builtin.

	__init__.py: This is the init file. It activates Colorama (which is used to colorize the execution)
and defines a __version__ (which is, actually, diddiparser2.parser.__version__).

	__main__.py: This file enables the use of python -m diddiparser2, the DiddiParser2 main CLI.

	cli.py: The place where the main CLI is set.

	diddiscript_types.py: The main factory of the DiddiScript types, represented by Python classes.

	messages.py: The factory of the parser’s messages, like successes, warnings and errors.

	parser.py: The main parser. It also manipulates the DiddiScript interactive console.

	docs/: All the documentation lives here. We won’t discuss each component now, but we’ll mention the main folders.

	appendix/: A small appendix of handy references.

	language/: The DiddiScript language reference.

	stdlib/: The reference for the standard libraries.

	conf.py: The Python file that sets up Sphinx for building the docs.

	dsgp/: The DSGPs (DiddiScript Enhancement Proposals) are stored here. We won’t mention each one of them now.

	tests/: The DiddiScript tests are here. They are not Pytest tests (not by now), they are DiddiScript files.

	requirements.txt: These are the requirements for running tests and linters.

	.gitignore

	CHANGELOG.md: The changelog per version.

	CONTRIBUTING.md: A really basic contributor guidelines. It actually points to the contributor reference in the docs.

	LICENSE.txt: Our license file, which is the MIT License.

	README.md: The main README file, which is used in the GitHub repo and the PyPI page.

	noxfile.py: Our setup file for Nox, which runs our automation.

	pyproject.toml: It only defines the build system (setuptools), the metadata is defined in setup.cfg.

	release-requirements.txt: The requirements for building a release.

	setup.cfg: The file where the metadata is stored.

DiddiScript comments

Like most of the languages, DiddiScript supports inline comments.
However, it does not support block comments (a single comment with multiple lines).
Comments are defined with a !#.

Note

DiddiParser used to support block comments. However, DiddiParser2
removed this feature.

Usage

Comments can have their own line:

!# This comment uses the whole line
some_function();

But they can also coexist with functions at the same line:

some_function(); !# This is an inline comment!

Functions

DiddiScript can handle functions with one argument, or without arguments.

Usage without arguments

!# A function without arguments
some_function();

If the function does not need arguments, you can just use
the function without arguments.

Note

DiddiParser2 standard functions will warn you if you added an
argument to a function that doesn’t need arguments. However, it won’t
raise an error – it will just ignore the argument.

Also, you can tell your custom functions (loaded as extensions) to
warn if they don’t need arguments.

Usage with arguments

!# Use as many arguments you need
some_function("arg 1", arg2);

In most of the cases, the functions need one argument. They can
be values or variables.

Special functions (tool functions)

This has moved into stdlib/builtin.

The DiddiScript language reference

This section specifies the DiddiScript grammar, defined and
used by DiddiParser 2.

	DiddiScript comments

	Functions

	DiddiScript variables

See also

	Standard DiddiScript libraries
	See the reference of the DiddiScript standard library.

DiddiScript variables

Variables help us to store and use data. You can use it on functions,
or by their own. This document explains how to define and use them on
your DiddiScript code.

See also

	DSGP 1 [https://github.com/DiddiLeija/diddiparser2/blob/main/dsgp/dsgp-001.md]
	Read the DSGP that specifies the variable standards, and the concept of
DiddiScript variables.

Definition syntax

var x;
var x = "Hello, world!";

To define a variable, type the keyword var, then the variable name. If
you want to preset the value, type = and then a valid value to store. If you
don’t preset a value, a default Null will be stored.

New in version 1.2.0: Now you can store the value of an existing variable
when defining it. For example: var stored_value = _memory.

Usage inside text (indexing)

You can insert variables to text. Use the ${variable_name}
syntax on a Text variable to insert variables on its content:

var name = "Diego";
var greeting = "Hello, ${name}!";

some_function("A line of text ${_endl} and another line!");

Reserved variables

We have reserved a few variable names for some operations. They cannot be modified,
but you can use them for getting certain data.

_memory

Introduced in 1.1.0.

This special variable replaces the old function store_last_value(). At the
beginning of the execution, it is completely forbidden. But under some events, it
stores values for it’s further usage.

When a variable is created, _memory becomes the variable content
generated at that time.

When a function is called, and it returns something, _memory becomes that
return value.

_endl

Introduced in 1.1.0.

This variable represents a newline ("\n"). We introduced it because adding
a "\n" directly becomes "\\n", so it does not represent a newline. But
using _endl provides this functionality.

List of allowed types

Null

An “empty value”, equivalent to the Python None and the C null types.

Text

A string of Unicode (most of the times UTF-8 encoded) characters.
They go quoted (with "" or '') in the code.

Boolean

True or False.

Floating

Decimal numbers, like 12.34. In math operations, they are compatible
with the Integer type.

Integer

Natural numbers like 1234. In math operations, they are compatible with
the Floating type.

_builtin – Convenience functions

Added in 1.1.0.

This special module is loaded on the parser’s initialization.

Note

Since version 1.1.0, this module replaces the Special functions (tool functions).
Also, it is now the module where MODULE_FUNCTIONS is stored.

Contents

Replacements for the tool functions

At version 1.0.0, we used to have something called tool functions,
a bunch of static “functions” that were available everywhere, anytime.
But since version 1.1.0, we decided to move those functions into this
library. That way, you can both replace these functions with functions
from other libraries, and load them again by loading _builtin.

	
cd(arg)

	
chdir(arg)

	
	Parameters

	arg – The path where to move.

Change the current working directory to arg. It returns a Text
of the new current working directory.

	
print_available_functions(arg)

	
	Parameters

	arg – A mandatory argument. This function won’t use it at all.

Print the available functions, and their origin.

	
load_module(*args)

	
	Parameters

	args – An undefined number of text values to load.

This loads a library from diddiparser2.lib, and all their
contents. It loads as many libraries as you request.

	
load_extension(*args)

	
	Parameters

	args – An undefined number of text values to load.

This will load an extension. An extension is a Python file that
can be imported from the current working directory.
This function loads as many libraries as you request.

See also

	DSGP 3 [https://github.com/DiddiLeija/diddiparser2/blob/main/dsgp/dsgp-003.md]
	The DSGP that provides a guide for extensions.

Stuff loaded from the simpleio library

The following functions are taken from the simpleio
library. The reference for the original functions can be
found at simpleio – Common I/O interactions.

	
print_text(arg)

	A shortcut for simpleio.print_text.

	
print_line(arg)

	A shortcut for simpleio.print_line.

	
store_input(arg)

	A shortcut for simpleio.store_input.

	
warning(arg)

	A shortcut for simpleio.warning.

fileio – Regular file interactions

This library provides functions to interact
with real files in the system.

Functions

	
printfile(path)

	
	Parameters

	path – The selected path.

This function tries to open the path, and then print it
on the console.

	
ensurefile(path)

	
	Parameters

	path – The path to find.

Verify if a file is accessible, and print the results.

	
store_file(path)

	
	Parameters

	path – The existing file to store.

Open and read a real file, then store its contents
on the library for its usage.

	
print_stored()

	Print the file that lives in the library memory. If
nothing is there, raise a run error.

Standard DiddiScript libraries

These libraries are stored by DiddiParser 2 (at diddiparser2.lib) and
are accessible on DiddiScript via the load_module function:

load_module("some_library");

function_from_library("...");

See also

	Tree of DiddiScript libraries [https://github.com/DiddiLeija/diddiparser2/tree/main/diddiparser2/lib]
	See the source code of the current DiddiScript libraries.

Documented libraries

	_builtin – Convenience functions

	fileio – Regular file interactions

	math – Math operations for DiddiScript

	simpleio – Common I/O interactions

	sqlite – Interact with SQLite databases

	subprocessing – Make subprocesses as DiddiScript functions

math – Math operations for DiddiScript

This library provides tools to operate integers
and floats, using DiddiScript functions.

Functions

	
sum_operation(*args)

	
	Parameters

	args – An unlimited number of values to sum.

Sum all the numbers and return a Floating.

	
subtraction_operation(*args)

	
	Parameters

	args – An unlimited number of values to subtract.

Subtract all the numbers and return a Floating.

	
multiplication_operation(*args)

	
	Parameters

	args – An unlimited number of values to multiply.

Multiply all the numbers and return a Floating.

	
division_operation(*args)

	
	Parameters

	args – An unlimited number of values to divide.

Divide all the numbers and return a Floating.

	
power(num, exp)

	
	Parameters

	
	num – The number to multiply exp times.

	exp – The power for num.

Calculate a num ^ exp operation.

simpleio – Common I/O interactions

This library provides basic user/machine
interactions. It helps to work with 3 kind of
streams:

	Input

	Output

	Errors

It also enables the usage of input storage, for its usage
on the output stream.

Functions

	
program_exit(msg)

	
	Parameters

	msg – The message to exit, or an exit code.

Exit with a message, or an exit code. That way, you can
exit by yourself.

	
print_text(*txt)

	
	Parameters

	txt – The text to be printed on the screen.
Multiple arguments are allowed.

Print a simple text on the screen, without adding a newline.

	
print_line(*txt)

	
	Parameters

	txt – The text to be printed on the screen.
Multiple arguments are allowed.

New since 1.1.0.

Print a simple text on the screen, with adding a newline.

	
store_input(msg)

	
	Parameters

	msg – The message to prompt the input.

Store an input, prompted with message msg. The input
will keep safe until requested, or called for storage in
a variable.

	
warning(msg)

	
	Parameters

	msg – The message to show.

New since 1.2.0.

Shows a warning using
:py:function:`diddiparser2.messages.show_warning`.

	
wait(amount)

	
	Parameters

	amount – The amount of time to wait.

New since 1.2.0.

Stop the program for amount time using the Python time.sleep.
Accepted DiddiScript types: Floating,
Integer.

sqlite – Interact with SQLite databases

This library provides an interface to the
sqlite3 Python module [https://docs.python.org/3/library/sqlite3.html].
With this, you can open databases, and execute SQL commands on it.

Warning

This library is in development, and its API and usage is not stable.
Use it under your own risk. Proofs of this are:

	A warnings.warn at the beginning of the Python module
(unfortunately, the warning is suppressed by importlib
while loading the module)

	A warning in the development tests

Functions

	
open_database(path)

	
	Parameters

	path – The database file name.

This function generates a connection with the database
path. It also creates a cursor to execute the SQL
commands.

Note

The keyword :memory: can be used as path to open
a database in the memory.

Warning

If you open a database, while you have another connection
with unsaved changes, the changes will be lost, and the previous
database will be closed.

	
close_database()

	This closes everything on the database (connection, cursor
and memory data).

Warning

If you have unsaved changes on the database, this function
will delete them. They won’t be saved.

Before closing a database, get sure to run the commit_changes
function (see below).

	
commit_changes()

	This function saves every unsaved change to the database. Get sure
to run this before closing the file or exiting from the program!

	
execute_sql(cmd)

	
	Parameters

	cmd – The SQL command.

Run a single line of SQL commands, that are passed to the cursor. The
changes will wait for a commit_changes() call to save the changes
caused by the command.

subprocessing – Make subprocesses as DiddiScript functions

This library has functions to run processes, like if they were
called from a terminal.

Functions

	
run_command(*cmd)

	
	Parameters

	cmd – Each part of the command.

Run cmd. It becomes a list of parts to run a command.

Example

For example, to run pip --version:

run_command("pip", "--version");

	
run_python_cmd(*cmd)

	
	Parameters

	cmd – The arguments passed to Python.

New since 1.1.0.

Run the python command with arguments cmd. It
uses sys.executable [https://docs.python.org/3/library/sys.html#sys.executable]
to run things.

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 DiddiParser 2 documentation

